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colleagues (2013) typically use a coarse-grained categorization
scheme, distinguishing about 20 processes such as vision, atten-
tion, phonology, semantics, learning, or working memory. This
scheme allows them to represent quantitatively how often, accord-
ing to a given literature, a given area is activated when one of these
20 processes is recruited by an experimental task, for example how
often articles studying working memory report activation in the
dorsal anterior insula. The pattern of recruitment of a given
area, given a particular set of fMRI articles and a categorization
scheme, is its functional fingerprint. Although, unsurprisingly,
areas tend to be activated by many processes, their functional fin-
gerprints vary. Importantly, a functional fingerprint is a mere
summary of a data set: It does not explain why the area is activated
the way it is.

Following Poldrack et al. (2009), Anderson (2014, sects. 4.3 and
4.4) proposes to use dimension reduction techniques (factor anal-
ysis, MDS, PCA, etc.) to identify a few dimensions explaining why
an area has its functional fingerprint. Instead of merely summariz-
ing the involvement of a given area in a set of tasks, as functional
fingerprints do, neural personalities explain this involvement:
They allow cognitive neuroscientists to claim that because an
area has a given neural personality (its score is i on NRP factor
1, j on NRP factor 2, etc.), it is involved more in some tasks
than in others.

However, dimension reduction techniques are ill suited for dis-
covering new cognitive constructs (Glymour 2001; Gould 1996).
These statistical techniques project high-dimensional spaces
onto spaces with fewer dimensions. On their own, the resulting di-
mensions cannot be interpreted realistically; they merely provide
convenient ways of summarizing high-dimensional data. Three
main arguments support this deflationary understanding of
dimension reduction techniques. First, the outcome of these
techniques is underdetermined. A given set of vectors in a high-
dimensional space can be projected onto different spaces with
different dimensions. To highlight merely three issues, there are
many nonequivalent dimension reduction techniques, the
number of dimensions is typically arbitrarily chosen, and these di-
mensions can be oriented in different manners. None of the pos-
sible spaces should be interpreted realistically because it would be
arbitrary to treat one of them as real to the detriment of the
others. Second, just like causally-based correlations, accidental
correlations can be projected onto a lower-dimensional space, re-
sulting in meaningless dimensions (e.g., Gould 1996, p. 280).
Hence, that a high-dimensional space can be projected onto a
lower-dimensional space does not justify interpreting the resulting
dimensions realistically. Finally, the capacity of dimension reduc-
tion techniques such as factor analysis to identify causes has not
been validated (Glymour 2001, Ch. 14). These three arguments
bear on Anderson’s project, exactly as they bear on IQ and person-
ality research: On their own, dimension reduction techniques do
not justify interpreting the dimensions of neural personalities re-
alistically. Forgetting their limitations is committing the error of
reification — namely, presuming that the abstract mathematical
entities uncovered by dimension reduction analyses correspond
to real psychological entities.

Naturally, the products of dimension reduction techniques can
sometimes be interpreted realistically instead of as mere instru-
ments for summarizing high-dimensional data. To do so scientists
need to bring their broader empirical knowledge to bear on the in-
terpretation of the dimensions of the lower-dimensional space. In
the present context, this means that a purely bottom-up approach
to cognitive ontology revision is unlikely to succeed: Some other in-
formation beyond the activation of brain areas across a range of
tasks and their dimension reduction is needed to interpret the re-
sulting dimensions realistically. Perhaps it is also worth noting
that establishing the predictive validity of neural personalities
does not justify understanding them realistically.

Anderson’s approach to cognitive ontology revision is not the
only one to fall prey to this reification objection; in fact, we spec-
ulate that in general purely bottom-up cognitive ontology revisions
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commit the error of reification (e.g., Poldrack et al. 2009). Such
approaches must reduce the very high-dimensional space
defined by the number of voxels considered in order to identify
cognitive constructs defined solely by brain activation patterns.
Doing so probably requires using techniques whose product
cannot be interpreted realistically. In our opinion, the reification
objection reveals a fundamental shortcoming of bottom-up cogni-
tive ontology revision.

Reason for optimism: How a shifting focus on
neural population codes is moving cognitive
neuroscience beyond phrenology
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Abstract: Multivariate pattern analysis can address many of the challenges
for cognitive neuroscience highlighted in After Phrenology (Anderson
2014) by illuminating the information content of brain regions and by
providing insight into whether functional overlap reflects the
recruitment of common or distinct computational mechanisms. Further,
failing to consider submaximal but reliable population responses can
lead to an overly modular account of brain function.

There is much to like in Michael Anderson’s new book, After
Phrenology (2014). First and foremost, he synthesizes a large
and diverse literature to support a sophisticated and evolutionarily
grounded approach to brain science. He describes the brain as a
system in constant flux, transiently coalescing competing and co-
operating neural assemblies in the service of action. The brain,
he reasons, evolved to engage successfully with the environment
rather than to represent the world accurately. He argues convinc-
ingly that this difference is underappreciated by cognitive neuro-
science, which instead tends to look for neural activity that
encodes objective properties in the environment as if they are
context- and perceiver-free.

Anderson’s description of the brain as a dynamic information
processing device that responds to structured signals from the en-
vironment to guide action dovetails with his and other theories of
neural reuse (Anderson 2010; Chang et al. 2013; Dehaene &
Cohen 2007; Marcus 2006; Parkinson & Wheatley 2015). The
basic idea here is that the brain solves new problems by repurpos-
ing preexisting neural architecture that solved structurally similar
problems. This evolutionary and action-focused account of the
brain is interwoven with the “extended mind” thesis, that intelli-
gence is subserved by iterative interaction with the environment.
These ideas form a solid, well-articulated, and reasonable book.

Less convincingly, Anderson argues that cognitive neuroscience
is held in thrall to a “massively modular” account of the brain.
From Anderson’s vantage point, the field’s modus operandi is to
test for and report the single unified function of each brain
area, as if the brain is a “collection of organs” (p. 292). As he
points out, a brain composed mostly of special-purpose modules
would be inefficient, prohibitively large, and inconsistent with
the bulk of currently available evidence. We agree with Anderson
that massive modularity is untenable, but so too does all but a van-
ishing minority of neuroscientists. The near-consensus view
among contemporary neuroscientists is that most cortical
regions exhibit considerable functional heterogeneity. Hence,
the pleas to jettison modularity feel dated.
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Anderson correctly asserts that the interconnected complexity
and flexibility of neural activity presents immense challenges for
brain science. The categories that we use to reflect on our own
cognition are unlikely to match the functional organization of
the brain, and a given brain region likely serves multiple functional
roles, which can differ depending on the current environmental
context and the networks in which the brain region is currently
participating. However, we are somewhat more optimistic that
the field can make significant headway in uncovering the structure
of operations underlying human thought and behavior. This opti-
mism is fueled in large part by more than a decade of cognitive
neuroscience research that has honed techniques for multivariate
pattern analysis of functional neuroimaging data. After Phrenology
briefly alludes to this approach (Kriegeskorte et al. 2008a), but we
believe that it is of particular relevance to Anderson’s proposed
framework and to his suggested ways forward for the field, and
hence, merits further emphasis.

We now know that the brain encodes many kinds of information
(e.g., memories, tastes, reach trajectories) in neuronal population
codes, rather than in the magnitude of single units’ responses
(Georgopoulos et al. 1988; Lin et al. 2006; Pouget et al. 2000;
Simon et al. 2006). Fortunately, much of the information con-
tained in neuronal population codes can be gleaned from the in-
direct and spatially coarse measurements of brain activity that
are currently available to researchers studying human brain func-
tion (e.g., functional magnetic resonance imaging, fMRI; Kriege-
skorte et al. 2008b).

However, much of the information present in neural population
codes is lost when analyzing the magnitude of responses of a given
functional unit in isolation. For example, one of the first studies
that analyzed fMRI data in terms of population response vectors
demonstrated that brain regions that are typically characterized
in terms of the categories of stimuli eliciting maximal responses
(e.g., the fusiform face area) also differentiate between stimulus
categories that evoke submaximal responses, such as chairs,
shoes, cats, and houses (Haxby et al. 2001). This information
was carried in unique and consistent topographic arrangements
of responses for each stimulus category, and such information
had previously been missed by analyzing data in terms of response
magnitude only. Hence, analyzing neural responses only in terms
of overall response magnitude can lead to an exaggeratedly
modular conceptualization of brain function, as it can underesti-
mate the number of brain regions involved in processing a stimu-
lus category, as well as the number of stimuli a given brain region
is involved in processing. Therefore, the brain may be even less
modular than the functional fingerprinting method that Anderson
employs would suggest, given that this method appears to only
take into account response magnitude.

Analyzing data in terms of population response vectors, rather
than overall response magnitude, can also provide insight into
how information is organized within brain regions. To this end, re-
searchers have applied both supervised and unsupervised
machine learning techniques when analyzing the distributed to-
pographies of activity within brain regions in order to characterize
the distinctions that those brain regions make about various
classes of stimuli. For example, by characterizing the similarity
structure of population response vectors to visual stimuli within
brain regions of the ventral visual pathway, researchers have
gained insight into the distinctions that brain areas within that
pathway make about sets of stimuli, and hence, the operations
that they may contribute to visual processing (Connolly et al.
2012). Studies using unsupervised learning techniques (e.g., clus-
tering, multidimensional scaling) have the notable benefit of being
wholly data-driven in the structure that is revealed. Hence, such
approaches will be useful in following Anderson’s call for a
science focused on illuminating the psychological factors that
best account for observed differences in neural activity, rather
than on attempts to map psychological constructs onto the brain.

Considering the information content of multivoxel response
patterns, rather than focusing solely on response magnitude,
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also allows researchers to probe the functional significance of
overlap in the brain regions that are recruited to process diverse
domains of contents. Univariate, subtraction-based approaches
to analyzing brain activity are relatively well suited to asking
questions such as, “Is this brain area involved in both Task X
and Task Y?” and “Is this brain area recruited ‘more’ for Task X
than Task Y?” In contrast, analyzing neural population responses
is an approach that is relatively better suited to uncovering how
a brain region might contribute to various tasks. Functional
overlap can reflect the recruitment of shared or distinct mecha-
nisms, and these possibilities can sometimes be disentangled by
studying neural population response vectors. For example, al-
though univariate, magnitude-based analyses of fMRI data sug-
gested that most voxels in a region of lateral occipital-temporal
cortex responded to both static pictures of bodies and movement
displays, subsequent analysis of the population responses in that
region demonstrated that the response patterns to these two
sets of stimuli, though spatially overlapping, were unrelated
(Peelen & Downing 2007). Observations such as these are consis-
tent with Anderson’s suggestion that a brain region’s computation-
al role can differ depending on the circumstances surrounding its
recruitment (e.g., the processing demands of a stimulus, the other
brain regions with which it is interacting). Hence, analyzing pop-
ulation response vectors can help determine whether spatially
overlapping functional activity for two different tasks reflects the
recruitment of the same or dissociable underlying mechanisms.

The analysis of population response vectors can also reveal
when functional overlap reflects the recruitment of a common un-
derlying neural operation across multiple experimental contexts.
For example, a machine learning classifier trained to distinguish
between population response vectors within the superior parietal
lobule (SPL) associated with leftward and rightward eye move-
ments can correctly distinguish between population response
vectors in the SPL corresponding to mental subtraction and
mental arithmetic (Knops et al. 2009). This suggests that the
SPL contributes shared operations when shifting spatial attention
within the external environment (during saccades) and within in-
ternal mental representations (when performing arithmetic). This
likely reflects a case of neural reuse through which functional ar-
chitecture with a preexisting role in shifting attention in the exter-
nal environment is exploited in order to perform analogous
operations on mental representations, and hence, to perform
the culturally learned skill of arithmetic.

We recently used classification and similarity structure-based
analyses of neural population response vectors to test for a
common neural encoding of egocentric distance in spatial, tempo-
ral, and social frames of reference (Parkinson et al. 2014). Cross-
domain decoding analyses, as well as analyses of the similarity
structure of population responses, revealed that areas such as
the right anterior inferior parietal lobule, which has a long-estab-
lished role in representing physical space, organize information
not based on distance category (e.g., “Is this a social or temporal
distance?”), but based on distance from the self (i.e., “Is this rel-
atively close to or far away from me?”). These results are consis-
tent with Anderson’s suggestion that the brain is largely
concerned with computing behaviorally relevant information,
such as distance from oneself (and hence, relevance for action).
Further, these results are consistent with the possibility that
neural mechanisms for encoding information about physical
space may have been reused in order to operate on increasingly
abstract contents, such as temporal and social relationships (Par-
kinson & Wheatley 2013; 2015).

Understanding how the brain gives rise to a given facet of cog-
nition or behavior requires not only identifying the neural sub-
strates involved, but also uncovering the kinds of operations
performed by those substrates. We are optimistic that advances
in neuroimaging methods, such as the analysis of neural popula-
tion response vectors, will be useful in moving toward a deeper
and more veridical understanding of functional brain organization
and of the flexible and adaptive computations that underlie
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everyday thought and behavior. In so doing, cognitive neurosci-
ence has the potential to elucidate the particular functional capac-
ities that may be reused over the course of evolution and
development to solve novel problems.

Multisensory integration substantiates
distributed and overlapping neural networks
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Abstract: The hypothesis that highly overlapping networks underlie brain
functions (neural reuse) is decisively supported by three decades of
multisensory research. Multisensory areas process information from
more than one sensory modality and therefore represent the best
examples of neural reuse. Recent evidence of multisensory processing in
rimary visual cortices further indicates that neural reuse is a basic
feature of the brain.

Cognitive and perceptive functions are supported by highly over-
lapping neural networks distributed throughout the brain, and this
phenomenon can be referred to as “neural reuse” (Anderson
2010; 2014; Pessoa 2012). To use a metaphor, we might
imagine the brain as a choir and neurons as the singers composing
the choir; when the choir sings Song 1, some singers do not sing at
all while others sing vigorously. “Active” singers represent the
portion of the choir performing Song 1 (see Fig. 1a); in terms of
the brain, those singers represent the neural network (parts of
the brain) activated during a given cognitive or perceptive
process (e.g., visual perception). When the choir sings Song 2, a
slightly different, but highly overlapping portion of the singers
might be active (see Fig. 1b). This exemplifies how different
tasks (Song 1 and Song 2) recruit highly overlapping, but not iden-
tical, portions of the choir (see Fig. 1c); in the brain, a given cog-
nitive or perceptive task (e.g., visual imagery) recruits a neural
network highly overlapping, but not identical, to the one associat-
ed with visual perception (Ganis et al. 2004).

One of the hot topics for debate in experimental psychology and
neuroscience is on the extent of specialisation or distribution of
the brain functions (Anderson 2010; Driver & Noesselt 2008;
Liang et al. 2013). Empirical evidence seems to favour the idea
that the brain operates in a distributed, rather than specific,
manner. For example, brain areas that were considered to be spe-
cialised for specific tasks (e.g., the fusiform face area for face

recognition) have been found to be activated during performance
of other tasks (e.g., recognition of cars; Gauthier et al. 2000). Re-
search has also shown that cognitive and perceptive processes
usually involve networks of brain areas rather than one specific
area; for example, a very specific process such as face recognition
recruits a network of brain areas including the occipital, temporal,
and frontal lobes rather than one specific portion of the brain
(Goldstein 2009). This distribution of brain functions is not only
seen for the processing of faces, but also for other perceptual
and cognitive functions (if not all; Van Dijk et al. 2010; Yeo
et al. 2011) such as perception (Takahashi et al. 2013; Uesaki &
Ashida 2015), attention (Posner & Rothbart 2007; Shulman
et al. 1999), memory (Alain et al. 1998; Desgranges et al. 1998),
language (Duffau 2008; Horwitz & Braun 2004), spatial cognition
(Burgess et al. 2001; Vallar et al. 1999), and body representation
(Filippetti et al. 2015; Longo et al. 2010).

This phenomenon is not limited to the macroscopic level (i.e.,
brain areas), but has also been observed on the microscopic
level. Some neurons have been found to respond to several
types of stimuli, rather than to a specific type of stimulus, with dif-
ferent response patterns (e.g., firing frequencies). The difference
in response patterns is the feature that distinguishes the stimuli
represented by the neurons (Decharms & Zador 2000; Gerstner
etal. 1997). In a simplistic example, during the processing of Stim-
ulus A, Neuron 1 fires at a high frequency, Neuron 2 at a low fre-
quency, and Neuron 3 at a medium frequency. Whereas, during
the processing of Stimulus B, Neuron 1 fires at a medium fre-
quency, Neuron 2 at a high frequency, and Neuron 3 does not
fire at all. To reuse the above-mentioned metaphor, the same
singers might participate differently in performance of different
songs.

The notion that brain functions are based on distributed and
overlapping neural networks is convincingly supported by the
findings that input from different sensory modalities activate dis-
tributed and overlapping networks of brain areas — namely, multi-
sensory processing (Ricciardi et al. 2014; Stein & Stanford 2008;
Stein et al. 1988). Multisensory areas are portions of the brain pro-
cessing input from different sensory modalities. In the last
decades, an increasing number of multisensory areas have been
identified (Amad et al. 2014; Gallese et al. 1996; Gobbelé et al.
2003; Sereno & Huang 2006), suggesting that the brain is more
engaged in multisensory processing than was initially believed.
Classic multisensory (or associative) areas are activated by
visual, auditory, and somatosensory input and consist of prefrontal
(Fuster 1988; Ongiir & Price 2000), posterior parietal (Andersen
et al. 1985; Serino et al. 2011), and superior temporal (Beau-
champ et al. 2008; Bruce et al. 1981) cortices. More recently,
new multisensory areas have been identified, in the posterior
frontal (Grafton et al. 1997), temporoparietal (Matsuhashi et al.
2004), and occipitotemporal (Beauchamp 2005) cortices.

Figure 1 (Pasqualotto).
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Singers of the choir singing (a) Song 1 (dark-grey); (b) Song 2 (dark-grey); (c) both Songs 1 and 2 (light-grey).
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